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Abstract

In this paper, we provide a new framework to assess the validity of Zipf’s Law for cities. Zipf’s

Law states that, within a country, the distribution of city sizes follows a Pareto distribution with

a Pareto index equal to 1. We adopt a two-step approach where we formally test if the distribu-

tion of city sizes is a Pareto distribution and then we estimate the Pareto index. Through Monte

Carlo experiments, we investigate the finite sample performances of this testing procedure and

we compare the small-sample properties of a new estimator (the minimum variance unbiased

estimator) to those of commonly used estimators. The minimum variance unbiased estimator

turns out to be more efficient and unbiased. We use this two-step approach to examine empiri-

cally the validity of Zipf’s Law on a sample of 115 countries. Zipf’s Law is not rejected in most

countries (62 out of 115, or 53.9%).

Key words: Zipf’s Law, Pareto distribution, Monte Carlo study, Minimum variance unbiased

estimator, Developing countries

JEL: C13, C16, R12

1. Introduction

The interest for Zipf’s Law for cities and the rank-size rule is quite old. Auerbach (1913) and

Zipf (1949) were among the first to postulate the existence of an empirical regularity between the

population (size) of a city and its rank in the urban hierarchy. Zipf’s Law stipulates that, within

a country, the distribution of city sizes follows a Pareto distribution with a Pareto index equal

to 1. The cross-country investigation of Rosen and Resnick (1980) initiated a series of empirical

studies in the 1980s and early 1990s (Alperovich, 1984, 1988; Cameron, 1990; Guérin-Pace, 1995).

The seemingly validation of Zipf’s Law as an empirical regularity and the inadequacy of existing

urban theories in explaining it gave birth to the “mystery of urban hierarchy” (Krugman, 1996).

Gabaix (1999a,b) renewed the interest of economists in Zipf’s Law in two main areas. The first

research area has pursued the exploration of the empirical validity of Zipf’s Law (Soo, 2005;

IThe author thanks Grégroire Rota-Graziosi for his valuable comments and suggestions.
Email address: sebastien.terra@u-clermont1.fr (Sébastien Terra)



Nitsch, 2005; Soo, 2007; Le Gallo and Chasco, 2008). On the other hand, the second research

area has sought to provide theoretical underpinnings to Zipf’s Law (Duranton, 2006; Mansury

and Gulyas, 2007; Rossi-Hansberg and Wright, 2007; Cordoba, 2008). However, Gan et al. (2006)

suggested that Zipf’s Law was a mere statistical artifact resulting from a spurious regression.

They concluded that Zipf’s Law “does not require an economic theory that determines city-size

distributions”.

Zipf’s Law is a useful approach to analyze and describe of the distribution of city sizes.

Other measures can be used to describe this distribution: primacy indexes or concentration

indexes (Herfindhal or Gini indexes for instance). However, as Soo (2007) suggested, Zipf’s Law

has been extensively studied for two main reasons. On the one hand, unlike primacy measures,

Zipf’s Law and the Pareto index provide information on the distribution of the urban system

beyond the largest cities. On the other hand, the Pareto index is easy to interpret: it is closely

related to the Gini coefficient. High values of the Pareto index imply that city sizes are more

uniform whereas low values of the index reveal that the population is more concentrated in a

few cities. Moreover, as in Soo (2005) and Ioannides et al. (2008), the Pareto index can be used

in investigations of the effects of political variables (Ades and Glaeser, 1995) and geographical

features (Brakman et al., 1999; Fujita et al., 1999) on urban structure.

The analysis of the validity of Zipf’s Law crucially depends on the estimation of the Pareto

index. The choice of an appropriate econometric methodology has been the cornerstone of

empirical studies on Zipf’s Law. The Pareto index has traditionally been estimated using the

OLS estimator. However, using a Monte Carlo study, Gabaix and Ioannides (2004) showed that

this estimator was biased in small samples and proposed to use Hill’s estimator (Hill, 1975). In

an empirical cross-country investigation, Soo (2005) used both methods: his results suggested

that Hill’s estimator might not be reliable in small samples. Recently, Gabaix and Ibragimov

(2007) derived a simple and practical correction to the OLS estimator to minimize its bias in

small samples.

In this paper, we review and extend previous works on the choice of an appropriate estimator

for the Pareto index. In particular, we develop a new testing procedure to assess the validity

of Zipf’s Law, based on a two-step approach. In the first step, we use goodness-of-fit tests to

determine if the distribution of city sizes within a country follows a Pareto distribution. This

first step has seldom been considered in previous studies. In the second step, we estimate the

Pareto index and test if it is equal to 1. This second step corresponds to what has been used as

a test of the validity of Zipf’s Law in previous studies. To estimate the Pareto index, we propose

to use a new estimator: the minimum variance unbiased estimator. Through Monte Carlo ex-
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periments, we investigate the finite sample performances of the suggested testing procedure and

we compare the small-sample properties of this estimator to those of commonly used estimators.

The minimum variance unbiased estimator turns out to be more efficient and unbiased. When

this estimator is used, the actual size of the testing procedure is close to the nominal size and

the test has a high power as soon as the sample size is larger than 50. Consequently, we apply

this two-step approach to examine the validity of Zipf’s Law on a sample of 115 countries. For

each country, we focus on the upper tail of the city size distribution1. Zipf’s Law is not rejected

in most countries (62 out of 115, or 53.9%). Particularly, Zipf’s Law is not rejected in many

developing countries, especially in Africa and South America. However, Zipf’s Law is rejected

in most Asian countries and developed countries.

The article is novel for three main reasons. First, contrary to most previous empirical studies,

it investigates the validity of Zipf’s Law in an integrated framework allowing to test if city sizes

follow a Pareto distribution. In most previous studies, Zipf’s Law was rejected if the Pareto index

was different from 12. However, if the distribution of city sizes is not a Pareto distribution, the

meaning of the estimate of the Pareto index is unclear. For instance, in some countries (such as

Benin, China or the United States), the Pareto index is not different from 1 but the distribution

of city sizes does not follow a Pareto distribution. Using the usual approach, we would not reject

Zipf’s Law whereas it ought to be. More generally, our results show that the usual approach

based only on the value of the Pareto index may be misleading. Indeed, with the usual approach,

we would conclude that Zipf’s Law is not rejected in 76 countries (66.1%) whereas our testing

procedure suggest that Zipf’s Law is not rejected in only 62 countries (53.9%).

Then, the estimator that we use to estimate the Pareto index (the minimum variance un-

biased estimator) is unbiased and more efficient than traditional estimators especially in small

samples. The OLS estimator provides biased results and under-estimated standard errors: it

over-rejects Zipf’s Law. On the other hand, the method suggested by Gabaix and Ibragimov

(2007) suffers from its low precision leading to a lack of power in detecting departures from

Zipf’s Law. The minimum variance unbiased estimator proposed in this study overcomes these

two caveats and provides a more reliable value. Moreover, our approach avoids the pitfalls of

the log-log plot which is frequently used to study city size distributions (Eeckhout, 2009; Levy,

2009).

Lastly, we use a sample that is more comprehensive than previous ones. Rosen and Resnick

1Eeckhout (2009) recently showed that the Pareto distribution was appealing to study the upper tail of the

city size distribution
2Eeckhout (2004) and Gan et al. (2006) are notable exceptions; goodness-of-fit tests are used in both studies.
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(1980) studied a sample of 44 countries while the sample of Soo (2005) contained 73 countries.

Here, the urban systems of 115 countries, covering the period 1970-2009, are analyzed.

This paper is structured as follows. Section 2 describes the methodology and the two-step

approach followed to test the validity of Zipf’s Law. Section 3 presents the results of the Monte

Carlo study investigating the performance of the testing procedure and comparing the small-

sample properties of various estimators of the Pareto index. In section 4, we present the data and

the main results concerning the empirical validity of Zipf’s Law. Finally, section 5 concludes.

2. Empirical methodology

Our empirical methodology is based on a two-step approach. The first step consists in

a formal test (a goodness-of-fit test) of the hypothesis that the distribution of city sizes is a

Pareto distribution. In the second step, the Pareto index is estimated and a test of its equality

to 1 is implemented.

2.1. Goodness-of-fit tests for Pareto distributions

Before describing the goodness-of-fit tests, a reminder of the main properties of the Pareto

distribution is in order3. The probability density function f , the cumulative distribution function

F and the survival function S of a variable X following a Pareto distribution P(k, α) are:

f(x) =
αkα

xα+1
, x ≥ k > 0

F (x) = 1−
(x
k

)−α
, x ≥ k > 0

S(x) = 1− F (x) =
(x
k

)−α
, x ≥ k > 0 (1)

where k is a scale parameter corresponding to the minimal value of the distribution and α > 0

is a shape parameter measuring the thickness of the distribution tail. The parameter α is called

the Pareto index (or Pareto exponent or Zipf’s coefficient). Zipf’s Law holds if α = 1.

Goodness-of-fit tests allow to test if the empirical distribution of a variable (here city sizes)

follows a known theoretical distribution (here a Pareto distribution). Several tests have been

developed: the Kolmogorov-Smirnov test (Kolmogorov, 1933; Smirnov, 1948), the Cramér-von

Mises test (Cramér, 1928; von Mises, 1931) and the Anderson-Darling test (Anderson and Dar-

ling, 1952, 1954; Stephens, 1974), to name just a few. The null hypothesis of these tests is that

the postulated distribution is acceptable whereas the alternative hypothesis is that the data do

3Kleiber and Kotz (2003) and Johnson et al. (1994) present additional results and properties for the Pareto

distribution.
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not follow this distribution. Thus, the general structure of these tests is:

H0 : Fn(x) = F (x; θ)

H1 : Fn(x) 6= F (x; θ)

where Fn is the empirical cumulative distribution function, F is the postulated theoretical

cumulative distribution function and θ is a vector of parameters.

To compute these test statistics, a measure of the distance between Fn and F is needed.

This distance can be measured by a supremum norm or a quadratic norm. In the case of a

supremum norm, the goodness-of-fit test is the Kolmogorov-Smirnov test. The Kolmogorov-

Smirnov statistic D is defined by :

D = sup
x
|Fn(x)− F (x; θ)|

In the case of a quadratic norm, the goodness-of-fit tests are the Cramér-von Mises and Anderson-

Darling tests. The generic statistic of test in the Cramér-von Mises family is given by:

Q = n

∫ ∞
−∞

(Fn(x)− F (x; θ))2 ψ(x) dx

When ψ(x) = 1, Q is the statistic of Cramér-von Mises, denoted by W 2. When ψ(x) = F (x) (1−

F (x)), Q is the statistic of Anderson and Darling, denoted by A2. Computational details for

these tests can be found in Č́ıžek et al. (2005, chapter 13).

A particular difficulty arises since we want to test the hypothesis that a sample of size n has

a given distribution function F (x; θ) with unknown θ, where θ = (k, α)) in a Pareto distribution.

Therefore, we first need to estimate the vector θ, which makes it necessary to adjust the critical

values of the tests. Ross (2006, chapter 9) advocates the use of Monte Carlo simulations in this

context and suggests the following procedure. First, θ is estimated from the sample and the

required test statistic (D, W 2 or A2) is computed and denoted by d. Then R samples of size

n are generated from the distribution F (x; θ̂). For each simulated sample r (r = 1, . . . , R), the

parameter vector θ̂SIMr is estimated and the test statistic dr is calculated assuming that the

sample is distributed according to F (x; θ̂SIMr ). The p-value p is obtained as the proportion of

times that this test statistic is at least as large as d:

p =
1

R

R∑
r=1

1[dr≥d]

where 1A is the indicator function that equals 1 if event A occurs.

2.2. Estimators of the Pareto index

Various estimators can be used to estimate the value of the Pareto index. These estimators

are based either on a regression estimated by ordinary least squares (OLS), or on the maximum

likelihood estimator.
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2.2.1. OLS estimator

Historically, the estimation by OLS has been the first method used to assess the validity of

Zipf’s Law. The following regression is estimated by OLS:

ln(Ri) = a− b ln(Pi) + εi , i = 1, . . . , n (2)

where Pi is the population of city i and Ri its rank in the decreasing hierarchy of cities. This

equation can easily be derived when we assume that the size distribution of cities is a Pareto

distribution. As Eeckhout (2004) showed, the rank of a city in the empirical distribution is given

by R = nS(P ), where n is the number of cities in the sample and S(P ) is the probability that a

city has a population greater than P (where S is the survival function of a Pareto distribution).

Using equation (1), the previous equation can be rewritten as:

R = n

(
P

k

)−α
,

or lnR = a− α lnP

where a = lnn+ α ln k is a constant. The parameter b in equation (2) therefore corresponds to

the Pareto index: b = α.

2.2.2. Corrected OLS estimator

The previous estimator remains a popular approach to estimate the Pareto index. However,

as Gabaix and Ioannides (2004) showed, this approach provides biased estimations in small sam-

ples. Gabaix and Ibragimov (2007) derived a simple and practical solution to correct this bias.

They proposed to use the variable Ri − 1
2 instead of Ri, and therefore to estimate equation (3)

instead of equation (2):

ln(Ri − 1/2) = a− b ln(Pi) (3)

The Pareto index is estimated by b. Gabaix and Ibragimov (2007) showed that the transforma-

tion 1/2 is optimal since it minimizes the small-sample bias of the OLS estimator. The valid

standard error of the estimated parameter b̂ is b̂
√

2
n .

2.2.3. Hill’s estimator

To correct the bias of the OLS estimator in small samples, Gabaix and Ioannides (2004)

proposed to use the estimator derived by Hill (1975). Denoting P(i) the population of the city

of rank i, with P(1) ≥ . . . ≥ P(n), Hill’s estimator is defined as:

α̂HILL =
n− 1

n−1∑
i=1

lnP(i) − lnP(n)

(4)
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The standard error of the estimated parameter α̂HILL is

σ
(
α̂HILL

)
= α̂HILL


n−1∑
i=1

(
τi − 1/α̂HILL

)2
n− 2



1
2

(n− 1)−
1
2 (5)

where τi = i
(
lnP(i) − lnP(i+1)

)
. Gabaix and Ioannides (2004) suggested that the small-sample

properties of this estimator may be “very worrisome”. The empirical results of Soo (2005)

confirmed this analysis.

2.2.4. Maximum likelihood estimator

The maximum likelihood estimator can easily be determined when we assume that the size

distribution of cites is a Pareto distribution. The maximum likelihood estimators of α and k

are:

α̂MLE = n

[
n∑
i=1

ln

(
xi

k̂MLE

)]−1
k̂MLE = min

i
xi

Quandt (1966) showed that α̂MLE and k̂MLE are consistent. However, in finite samples, these

estimators are not unbiased:

E
(
α̂MLE

)
=

nα

n− 2
, n > 2

E
(
k̂MLE

)
=

nαk

nα− 1
, n >

1

α

The statistic 2Nα
α̂MLE follows a χ2 distribution with 2(n − 1) degrees of freedom (Johnson et al.,

1994). The 95% confidence interval for α is:[
α̂MLE

2N
χ2
2(n−1),0.025 ,

α̂MLE

2N
χ2
2(n−1),0.975

]
2.2.5. Minimum variance unbiased estimator

The maximum likelihood estimators of α and k are biased in small samples even if they are

asymptotically unbiased. However, Likeš (1969) and Baxter (1980) derived minimum variance

unbiased estimators for these parameters:

α̂MV U =

(
1− 2

n

)
α̂MLE

k̂MV U =

(
1− 1

(n− 1)α̂MLE

)
k̂MLE

The statistic 2Nα
α̂MV U follows a χ2 distribution with 2(n−1) degrees of freedom (Likeš, 1969). The

95% confidence interval for α is:[
α̂MV U

2N
χ2
2(n−1),0.025 ,

α̂MV U

2N
χ2
2(n−1),0.975

]
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3. A Monte Carlo investigation of the small-sample properties of the testing pro-

cedure

We use a Monte Carlo investigation to study the small-sample properties of the testing

procedure described in section 2. This investigation allows us to evaluate the actual size (or

significance level) of the test (how often does the test reject the null hypothesis H0 when it is

true?) and its power (how often does the test reject H0 when it is false?). Since a major issue

in the literature on Zipf’s Law is the choice of an appropriate estimator for the Pareto index,

we also investigate the small-sample properties of the estimators described in paragraph 2.2.

The asymptotic properties of these estimators are well-known : they are consistent and (at least

asymptotically) unbiased (if the model is not misspecified). However, these asymptotic results

do not preclude finite sample bias. A Monte Carlo investigation allows us to compare these

estimators on the basis of bias and precision.

3.1. The design of the simulation study

We assume that the data generating process is a Pareto distribution P(k, α). For a sample

of size n, we generate n realizations of a random variable following this distribution. Random

numbers are generated with the inverse cumulative method (Train, 2003, chapter 9). Random

numbers ε following a Pareto distribution are generated as:

ε =
k

(1− µ)1/α
(6)

where µ is a random draw from a standard Uniform distribution. The sample size varies between

experiments with four different sample sizes: 20, 50, 100 and 200. The parameter α also varies

between experiments. Three values are used for α : 0.6, 1 and 1.4. For each Monte Carlo

experiment, the number of replications is 2,000.

3.2. The small-sample properties of the estimators

As the performances of the testing procedure depend on the properties of the estimators

used in the second step, we first present the results of the Monte Carlo investigation of the

small-sample bias and precision of the estimators of the Pareto index.

Three criteria are used to compare the small-sample properties of the various estimators.

We denote by θ the true value of the parameter of interest and θ̃ir its value estimated using

estimator i at replication r (r = 1, . . . , R) where R is the total number of replications. The first

criterion is the bias of the estimator i (Bi) for the parameter θ:

Bi =
1

R

R∑
r=1

θ̃ir − θ = θ̃i − θ (7)
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The second criterion is the variance of the estimator i (V i):

V i =
1

R− 1

R∑
r=1

(
θ̃ir − θ̃i

)2
(8)

The last criterion is the mean squared error (MSEi):

MSEi =
1

R

R∑
r=1

(
θ̃ir − θ

)2
(9)

Table 1 presents detailed numerical values of the bias and precision of the various estimators

for α = 1 and k = 10, 0004. For a small sample size (n = 20), the bias of some estimators is

substantial: it approaches 10% for the OLS and maximum likelihood estimators. Consistently

with the results of Gabaix and Ioannides (2004), the OLS estimator underestimates the value

of the Pareto index. The bias of Hill’s estimator and the bias of the corrected OLS estimator

of Gabaix and Ibragimov (2007) are more moderate (respectively 6.2% and 4.8%). Finally, the

bias of the minimum variance unbiased estimator is very small (-0.6%). As for the mean squared

error, the estimator of Gabaix and Ibragimov (2007) has the highest mean squared error due to

a relatively poor precision of this estimator. Quite predictably, the minimum variance unbiased

estimator has the smallest mean squared error. For larger samples (n = 200), the bias of most

estimators is negligible: the OLS estimator is the only biased one and underestimates the true

value of the Pareto index by about 3.9%. The minimum variance unbiased estimator still has the

smallest mean squared error and is virtually unbiased. These Monte Carlo simulations suggest

that the minimum variance unbiased estimator has the best small-sample properties, both in

terms of bias and mean squared error.

[Table 1 about here.]

3.3. The small-sample properties of the testing procedure

Two criteria are used to investigate the properties of the testing procedure: the size and the

power of the test. The size (or level) of the test corresponds to the type I error, that is to say

to an incorrect rejection of H0 when H0 is true. The power of the test is related to the type II

error and measures the probability of rejecting H0 when it is false. With Monte Carlo studies,

the true data generating process is known. Therefore, we can investigate if the testing procedure

rejects H0 when α = 1 (to investigate the size of the test) or when α = 0.6, 1.4 (to investigate

the power of the test). The empirical level of the test is the proportion of rejections of H0 when

it is true while the empirical power is the proportion of rejections of H0 when it is false.

4Complete results are available from the author upon request.
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Table 2 presents the empirical size of the testing procedure for different sample sizes. Since

this testing procedure is a sequence of two tests with a nominal significance size of 5% for

each test, the nominal size of the overall testing procedure is 10% (by Bonferroni inequality).

Using the OLS estimator in the second step of the procedure yields a very high type I error:

we reject H0 in at least 75% of cases while it is in fact true. The corrected OLS estimator of

Gabaix and Ibragimov (2007) under-rejects H0 with the Kolmogorov-Smirnov and Cramér-von

Mises tests but over-rejects it with the Anderson-Darling test: these results may be due to the

lower precision of this estimator. For the other estimators (Hill’s estimator, maximum likelihood

estimator, and minimum variance unbiased estimator), the empirical size of the test is close to

the nominal size for moderately large samples.

[Table 2 about here.]

Table 3 presents the empirical power of the testing procedure for different sample sizes. Since

the actual size of the test is larger than the nominal size for the OLS estimator, the evaluation

of the power is deeply flawed: the empirical power of the test using this estimator will not be

commented. Using the corrected OLS estimator in the second step of the testing procedure

yields a lower power than using the Hill’s estimator, the maximum likelihood estimator or the

minimum variance unbiased estimator. The lower precision of the corrected OLS estimator

results in larger confidence intervals leading too often to a non-rejection of H0 while it is indeed

false. When α = 0.6, the testing procedure using the three other estimators has a relatively high

power, especially for the minimum variance unbiased estimator. When α = 1.4, the power of

the testing procedure is lower; a reasonable power (80%) is achieved when n is larger than 100.

[Table 3 about here.]

The results of these Monte Carlo simulations suggest that the performance of the testing

procedure heavily depends on the choice of the estimator in the second step of the procedure.

When the OLS estimator or the corrected OLS estimator of Gabaix and Ibragimov (2007) are

used, the probability that a type I or a type II error is committed is very high. The use of these

estimators would lead to unreliable results. When the minimum variance unbiased estimator is

used, the actual size of the test is very close to the nominal size when n is larger than 50; the

procedure also has a high power to detect departures from Zipf’s Law when n is greater than

50.
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4. Empirical results on the validity of Zipf’s Law

This section presents the empirical results on the validity of Zipf’s Law on a sample of 115

countries. We follow the two-step approach described in section 2. We first test if the empirical

distribution of city sizes follows a Pareto distribution. We then use the approach followed in

previous studies and investigate whether the Pareto index is equal to 1. Finally, we bring

together these two steps to formally test the validity of Zipf’s Law.

4.1. Data

The data on city populations come from Brinkhoff (2008). This source of data from this

website has previously been used by Soo (2005) and Ioannides et al. (2008). Soo (2005) discusses

the issues of the reliability of the data and the delineation of cities. For some countries, the data

was supplemented with information coming from Statistics Finland (2008). In this database, all

cities with more than 100,000 inhabitants are included (with a threshold of 90,000 inhabitants

for European countries). The population of capitals and main cities of each country is also

available in this dataset.

We focus on the upper tail of the city size distribution, with a minimum population threshold

of 10,000 inhabitants per city. This population threshold varies between countries. To include

a country in the sample, an urban network of at least 20 cities was needed. Therefore, the

sample contains data on 115 countries, covering the period 1970-2009. For each country, city

populations are often available for several years: the maximal number of available years is 5,

for an average number of 2.7. The total number of observations (country × year) is 305. Our

dataset is thus more comprehensive than the sample used by Soo (2005) who studied 73 countries

for the period 1972-2001 (yielding 197 observations).

4.2. Step 1: Does the size distribution of cities follow a Pareto distribution?

In this paragraph, we present the empirical results of goodness-of-fit tests: does the empirical

distribution of city sizes follow a Pareto distribution? We use the testing procedure outlined

in section 2.1, with the Anderson-Darling test5. Table 4 summarizes the results for the latest

available year6 classifying for each continent the countries according to the results of goodness-

of-fit tests: Pareto distribution (null hypothesis) rejected at the 5% significance level or Pareto

distribution not rejected. Globally, in 26 countries out of 115 (22.6%), the null hypothesis is re-

jected at the 5% significance level: in these countries, the urban structure cannot be represented

5The results obtained with the Kolmogorov-Smirnov test or the Cramér-von Mises test are very similar.
6Complete results are available from the author upon request.
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by a Pareto distribution. On the contrary, in most countries, the hypothesis that city sizes are

Pareto distributed is not rejected.

The existence of primate cities in a country may explain why the distribution of city sizes

does not follow a Pareto distribution7. For instance, in Costa Rica, the urban structure does

not follow a Pareto distribution: its urban hierarchy is dominated by the city of San José with

346,800 inhabitants in 2006 while the second largest city (Limón) only has 63,500 inhabitants.

[Table 4 about here.]

4.3. Step 2: Is the Pareto index equal to 1?

This section presents the estimates of the Pareto index for the 115 countries in the sample. In

table 5, usual descriptive statistics for the various estimators are presented. The mean value for

the Pareto index estimated with the OLS estimator is 1.041. For the corrected OLS estimator,

the mean is 1.130. The mean of the estimates with the minimum variance unbiased estimator

is 1.039. Globally, theses results are slightly inferior to the values obtained in previous studies.

Rosen and Resnick (1980) found that the mean value for the Pareto index (using the OLS

estimator) was 1.136. The results obtained by Soo (2005) are somewhat similar: the mean value

with the OLS estimator is 1.11, while the mean value with Hill’s estimator is 1.17.

[Table 5 about here.]

In table 6, we present the results of the following test: is the Pareto index different from 1

at the 5% significance level? The estimates obtained with the OLS estimator suggest that the

Pareto index is significantly superior to 1 in 49 countries (42.6%) and inferior to 1 in 46 (40.0%).

On the contrary, the results with the corrected OLS estimator show that the Pareto index is

not different from 1 in 98 countries (85.2%). This is a consequence of the low precision of the

estimator, as shown in the Monte Carlo simulations described in section 3. For the minimum

variance unbiased estimator, the Pareto index is not significantly different from 1 in 76 countries

(66.1%), while it is inferior to 1 in 19 countries and higher than 1 in 20 countries.

These results on the closeness of the Pareto index to 1 are quite different from those presented

in previous studies (Rosen and Resnick, 1980; Soo, 2005). These two studies showed that the

Pareto index was often different from 1. Rosen and Resnick (1980) found that the Pareto index

was higher than 1 in 32 countries out of 44 (72.7%). Soo (2005) suggested that the Pareto index

was superior to 1 in 39 countries out of 73 (53.4%) and inferior to 1 in 14 countries (19.2%).

7Box 7.3 in Brakman et al. (2001) contains an interesting discussion on primate cities and Zipf’s Law.
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[Table 6 about here.]

Two reasons may explain the differences between our results and the findings of previous

studies. First, our sample is more comprehensive than previous ones. Rosen and Resnick (1980)

studied a sample of 44 countries while the sample of Soo (2005) contained 73 countries. Here,

the urban systems of 115 countries are analyzed. One difference is the coverage of Africa: the

sample used by Soo (2005) included 10 African countries while ours contains 29 African countries.

Africa has a particular urban pattern characterized by a relatively low mean value of the Pareto

index.

Indeed, analyzing the results by continent (tables 7 and 8), we can see that the Pareto index

is, on average, very close to 1 in Africa. Furthermore, the Pareto index is not significantly

different from 1 in 23 African countries (79.3%). Europe is characterized by a higher value of

the Pareto index. This result is consistent with the findings of Soo (2005). South America (with

a mean value of 0.934 for the minimum variance unbiased estimator) and Asia-Oceania (0.965)

have a Pareto index generally inferior to 1. These results suggest that the urban population in

European countries is more evenly distributed than predicted by Zipf’s Law. In Asia and South

America, the population is more concentrated in some cities.

[Table 7 about here.]

[Table 8 about here.]

To further investigate the impact of the definition of the sample, we can restrict the analysis

to a sub-sample corresponding to the countries present in the sample of Soo (2005)8. Using the

minimum variance estimator, the Pareto index is higher than 1 in 16 countries out of 71 (23.9%)

and inferior to 1 in 15 countries (22.4%). The Pareto index is therefore not significantly different

from 1 in most countries (53.7%). Using similar countries but a different estimator, the results

are different from those of Soo (2005) but are consistent with our results on a larger sample.

The second and principal explanation can be found in the econometric approach. The usual

approach (the OLS estimator) provides biased results and under-estimated standard errors,

which may explain why the Pareto index is more often different from 1. The method suggested

by Gabaix and Ibragimov (2007) seems to be too imprecise (see the Monte Carlo results in

section 3), and therefore leading too often to a non-rejection of the difference of the Pareto

index from 1. The minimum variance unbiased estimator proposed in this study overcomes the

two caveats and provides a more reliable value.

8Two countries present in the sample of Soo (2005) are not included in our sample: Mozambique (due to an

insufficient number of reliable data for city populations) and Yugoslavia.
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4.4. Summary: Is Zipf ’s Law rejected?

This paragraph synthesizes the two steps described in the previous paragraphs. It provides

the empirical results of the test of the validity of Zipf’s Law. In the previous paragraphs, the

significance level of the tests was 5%. Since we are performing multiple significance tests, by

Bonferroni inequality, the error rate for the test of the validity of Zipf’s Law is 10%.

Table 9 reports the results by continent. The comparison with table 7 shows that the usual

approach based only on the value of the Pareto index may be misleading. Indeed, with the usual

approach, we would conclude that Zipf’s Law is not rejected in 76 countries (66.1%) whereas

our testing procedure suggest that Zipf’s Law is not rejected in only 62 countries (53.9%). For

instance, in some countries (such as Benin, China or the United States), the Pareto index is not

different from 1 but the city sizes are not Pareto distributed: hence, Zipf’s Law is rejected.

In Africa, Zipf’s Law is not rejected in 55.2% of the countries. Thirteen African countries do

not verify Zipf’s Law. Some, such as Ivory Coast, Tunisia or Benin, have an urban system that

cannot be described by a Pareto distribution. Two countries have a Pareto index inferior to 1:

Zimbabwe (0.632) and Zambia (0.745). In these two countries, the urban population is more

concentrated in few cities than predicted by Zipf’s Law. On the contrary, in three countries

(South Africa, Ethiopia, Madagascar), the urban population is more evenly distributed. For

instance, in 2001, in South Africa, the population of the five main cities are relatively close:

Johannesburg has 1,009,000 inhabitants, Soweto 858,600, Kapkaupunki 827,200, Durban 536,600

and Pretoria 525,400.

In Europe and South America, Zipf’s Law is also frequently not rejected. On the contrary,

in Asia, it is largely rejected.

[Table 9 about here.]

5. Conclusion

In this paper, we proposed a new testing procedure to assess the validity of Zipf’s Law.

Previous studies (Rosen and Resnick, 1980; Soo, 2005; Nitsch, 2005) suggested that Zipf’s Law

was rejected in a majority of countries. On the contrary, our results show that Zipf’s Law is not

rejected in 55% of the countries in the sample. On average, the Pareto index is very close to 1

(1.039).

Two main reasons may explain these differences. On the one hand, our study focused on

a more comprehensive sample of 115 developed and developing countries, during the period

1970-2009. Compared with previous studies, developing countries are better represented in our

dataset and Zipf’s Law is seldom rejected in developing countries (notably in Africa and South
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America), which may explain the lower rejection of Zipf’s Law. On the other hand, we formally

tested the validity of Zipf’s Law using a new testing procedure. Our empirical approach rests on

an estimator which is virtually unbiased even in small samples, thus circumventing the pitfalls

encountered in previous studies.

Moreover, our results suggest that Zipf’s Law has a real empirical content. In a recent paper,

Gan et al. (2006) suggested that Zipf’s Law was a statistical artifact resulting from a spurious

regression (regressing the rank of a city, calculated from its population, on its population).

However, our results suggest the contrary. Using a rigorous approach, based on the distribution

of city sizes (and not on the ranks of cities), we show that Zipf’s Law is not rejected in most

countries. In other words, the need to provide theoretical foundations for Zipf’s Law remains

on the research agenda.
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Table 1: Small-sample properties of estimators - Monte Carlo simulations for α = 1 and
k = 10, 000 (2,000 replications)

Estimatora Mean Absolute Bias Relative Bias (%) Variance MSE

n=20
OLS 0.900 -0.100 -9.998 0.084 0.094
OLS2 1.048 0.048 4.819 0.110 0.112
HILL 1.062 0.062 6.200 0.075 0.079
MLE 1.118 0.118 11.790 0.083 0.097
MVU 1.006 0.006 0.611 0.067 0.067

n=50
OLS 0.920 -0.080 -8.041 0.034 0.040
OLS2 1.007 0.007 0.689 0.039 0.039
HILL 1.020 0.020 1.969 0.023 0.023
MLE 1.041 0.040 4.050 0.024 0.026
MVU 0.999 -0.001 -0.112 0.022 0.022

n=100
OLS 0.940 -0.060 -6.039 0.018 0.022
OLS2 0.997 -0.003 -0.278 0.020 0.020
HILL 1.005 0.005 0.516 0.011 0.011
MLE 1.015 0.015 1.532 0.011 0.011
MVU 0.995 -0.005 -0.499 0.010 0.010

n=200
OLS 0.961 -0.039 -3.881 0.009 0.011
OLS2 0.998 -0.002 -0.152 0.009 0.009
HILL 1.006 0.006 0.561 0.005 0.005
MLE 1.011 0.011 1.066 0.005 0.005
MVU 1.001 0.001 0.055 0.005 0.005

a OLS = OLS estimator
OLS2 = corrected OLS estimator
HILL = Hill’s Estimator
MLE = maximum likelihood estimator
MVU = minimum variance unbiased estimator
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Table 2: Empirical size (%) of the testa - Monte Carlo simu-
lations for α = 1 and k = 10, 000 (2,000 replications)

Estimatorb n = 20 n = 50 n = 100 n = 200

Kolmogorov-Smirnov test
OLS 75.80 82.30 87.45 88.60
OLS2 7.30 7.65 7.95 7.60
HILL 12.75 11.10 10.80 9.65
MLE 10.35 10.50 10.30 9.00
MVU 13.35 10.95 10.60 9.20
Cramér-von Mises test
OLS 75.75 82.35 87.45 88.60
OLS2 7.35 7.65 7.75 7.95
HILL 12.55 11.40 11.00 9.40
MLE 10.55 10.10 10.50 8.55
MVU 12.70 11.20 10.70 8.95
Anderson-Darling test
OLS 80.65 84.75 89.25 89.75
OLS2 19.25 20.55 21.10 18.30
HILL 17.10 13.10 11.95 9.65
MLE 15.65 11.30 11.40 9.40
MVU 13.25 11.30 10.65 8.60

a The nominal size of the test is 10%.
b OLS = OLS estimator

OLS2 = corrected OLS estimator
HILL = Hill’s Estimator
MLE = maximum likelihood estimator
MVU = minimum variance unbiased estimator

20



Table 3: Empirical power (%) of the test - Monte Carlo sim-
ulations for α = 0.6, 1.4 and k = 10, 000

Estimatora n = 20 n = 50 n = 100 n = 200

α = 0.6
Kolmogorov-Smirnov test
OLS 96.90 99.80 100.00 100.00
OLS2 50.00 81.90 97.90 99.95
HILL 72.65 96.00 99.75 100.00
MLE 65.75 95.00 99.85 100.00
MVU 80.40 97.75 99.85 100.00
Cramér-von Mises test
OLS 96.80 99.80 100.00 100.00
OLS2 50.45 82.15 97.85 99.95
HILL 72.95 95.90 99.75 100.00
MLE 65.90 95.00 99.80 100.00
MVU 80.25 97.70 99.85 100.00
Anderson-Darling test
OLS 98.35 99.90 100.00 100.00
OLS2 62.70 88.90 99.00 100.00
HILL 74.35 96.10 99.75 100.00
MLE 67.35 95.15 99.80 100.00
MVU 80.35 97.70 99.85 100.00

α = 1.4
Kolmogorov-Smirnov test
OLS 77.15 90.60 96.90 99.75
OLS2 5.50 22.40 55.70 90.55
HILL 27.25 59.25 88.85 99.60
MLE 30.20 65.80 91.45 99.80
MVU 19.25 55.25 87.10 99.60
Cramér-von Mises test
OLS 77.25 90.85 96.85 99.80
OLS2 5.75 22.50 56.00 90.60
HILL 26.40 59.30 88.85 99.60
MLE 30.15 65.60 91.40 99.80
MVU 18.80 54.90 87.00 99.60
Anderson-Darling test
OLS 77.20 89.65 96.15 99.75
OLS2 17.10 26.35 54.05 88.60
HILL 29.95 60.25 89.20 99.65
MLE 33.75 66.30 91.55 99.80
MVU 18.65 55.10 87.00 99.60

a OLS = OLS estimator
OLS2 = corrected OLS estimator
HILL = Hill’s Estimator
MLE = maximum likelihood estimator
MVU = minimum variance unbiased estimator
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Table 4: Results of the Anderson-Darling goodness-of-fit testa

Region H0 not rejected H0 rejected Total

Africa 21 8 29
America, North 1 1 2
America, South 15 4 19
Asia and Oceania 16 7 23
Europe 31 4 35
Middle East 5 2 7
World 89 26 115

a H0 : the empirical distribution is a Pareto distribution.
H1 : the empirical distribution is not a Pareto distribu-
tion.
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Table 5: Estimates of the Pareto index (α)

Estimatora Obs Mean Standard deviation Minimum Maximum

OLS 115 1.041 0.226 0.669 1.695
OLS2 115 1.130 0.236 0.728 1.887
HILL 115 1.059 0.252 0.523 1.766
MLE 115 1.080 0.255 0.530 1.778
MVU 115 1.039 0.250 0.517 1.754

a OLS = OLS estimator
OLS2 = corrected OLS estimator
HILL = Hill’s Estimator
MLE = maximum likelihood estimator
MVU = minimum variance unbiased estimator
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Table 6: Is the Pareto index (α) equal to 1 at the 5%
confidence level?

Estimatora α < 1 α = 1 α > 1 Total

OLS 46 20 49 115
OLS2 1 98 16 115
HILL 16 78 21 115
MLE 16 76 23 115
MVU 19 76 20 115

a OLS = OLS estimator
OLS2 = corrected OLS estimator
HILL = Hill’s Estimator
MLE = maximum likelihood estimator
MVU = minimum variance unbiased esti-
mator
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Table 7: Is the Pareto index (α) equal to 1 at the 5% confidence
level? - Analysis by continent

Estimatora/ Region α < 1 α = 1 α > 1 Total

OLS
Africa 11 8 10 29
America, North 1 0 1 2
America, South 12 3 4 19
Asia and Oceania 7 5 11 23
Europe 10 4 21 35
Middle East 5 0 2 7
OLS2
Africa 0 27 2 29
America, North 0 1 1 2
America, South 0 17 2 19
Asia and Oceania 1 20 2 23
Europe 0 26 9 35
Middle East 0 7 0 7
HILL
Africa 1 25 3 29
America, North 0 2 0 2
America, South 4 14 1 19
Asia and Oceania 7 12 4 23
Europe 3 20 12 35
Middle East 1 5 1 7
MLE
Africa 1 23 5 29
America, North 0 2 0 2
America, South 4 13 2 19
Asia and Oceania 7 13 3 23
Europe 2 21 12 35
Middle East 2 4 1 7
MVU
Africa 2 23 4 29
America, North 0 2 0 2
America, South 5 13 1 19
Asia and Oceania 7 13 3 23
Europe 3 21 11 35
Middle East 2 4 1 7

a OLS = OLS estimator
OLS2 = corrected OLS estimator
HILL = Hill’s Estimator
MLE = maximum likelihood estimator
MVU = minimum variance unbiased estimator
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Table 8: Estimates of the Pareto index (α) - Analysis by continent

Estimatora/ Region Obs Mean Standard deviation Minimum Maximum

OLS
Africa 29 0.997 0.225 0.700 1.693
America, North 2 1.098 0.223 0.940 1.256
America, South 19 0.966 0.217 0.669 1.695
Asia and Oceania 23 1.037 0.187 0.713 1.458
Europe 35 1.124 0.228 0.756 1.653
Middle East 7 1.010 0.307 0.767 1.610

OLS2
Africa 29 1.097 0.235 0.811 1.825
America, North 2 1.112 0.214 0.960 1.263
America, South 19 1.045 0.240 0.728 1.887
Asia and Oceania 23 1.119 0.208 0.782 1.621
Europe 35 1.213 0.218 0.871 1.733
Middle East 7 1.118 0.345 0.814 1.779

HILL
Africa 29 1.063 0.242 0.653 1.578
America, North 2 0.989 0.053 0.952 1.027
America, South 19 0.953 0.232 0.633 1.744
Asia and Oceania 23 0.984 0.209 0.523 1.333
Europe 35 1.189 0.254 0.769 1.766
Middle East 7 0.954 0.271 0.737 1.537

MLE
Africa 29 1.088 0.248 0.675 1.604
America, North 2 0.991 0.051 0.954 1.027
America, South 19 0.969 0.235 0.654 1.778
Asia and Oceania 23 1.003 0.217 0.530 1.372
Europe 35 1.209 0.252 0.790 1.778
Middle East 7 0.980 0.277 0.754 1.578

MVU
Africa 29 1.038 0.237 0.632 1.553
America, North 2 0.988 0.054 0.949 1.026
America, South 19 0.936 0.230 0.612 1.710
Asia and Oceania 23 0.965 0.203 0.517 1.323
Europe 35 1.168 0.257 0.748 1.754
Middle East 7 0.929 0.265 0.719 1.497

a OLS = OLS estimator
OLS2 = corrected OLS estimator
HILL = Hill’s Estimator
MLE = maximum likelihood estimator
MVU = minimum variance unbiased estimator
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Table 9: Is Zipf’s Law rejected?a

Region Zipf’s Law not rejected Zipf’s Law rejected Total

Africa 16 13 29
America, North 1 1 2
America, South 12 7 19
Asia and Oceania 10 13 23
Europe 20 15 35
Middle East 3 4 7
World 62 53 115

a In this table, results obtained with the minimum variance unbiased in
the second step are presented.
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